原油最低跌到多少-原油价格能到水下多少米
1.什么是世界海洋石油储运技术?
2.海底石油是到海底去开采吗?
3.美国墨西哥湾原油泄漏事件的事故经过
4.海洋对我们有哪些作用
5. 高凝高黏原油输送技术
什么是世界海洋石油储运技术?
一、海上油气集输系统
油气集输是继地质勘探、油田开发、钻井采油之后的油田生产阶段。这阶段的任务是从油井井口开始,将油井的产出物在油田集中、油气分离、计量、净化处理、必要的初加工,生产出符合质量要求的油、气及副产品,而后输送给用户。
海上油气集输系统包括海上油气生产设备系统以及为其提供生产场地、支撑结构的工程设施。海上油气集输包括了整个油田生产设备及其工程设施。这些工程设施有井口平台、生产平台、生活平台、储油平台、储油轮、储油罐、单点系泊、输油码头等。根据所开发油田的生产能力、油田面积、地理位置、工程技术水平及投资条件,可分别组成不同的油气集输系统。
随着海上油田开发工程由近海向远海发展,海上油气集输形成了以下三种类型。
1.全陆式集输系统
海上油田开发初期,是在离岸不远的地方修筑人工岛,建木质或混凝土井口保护架(平台)打井采油。油井的产出物靠油井的压力经出油管线上岸集油、分离、计量、处理、储存及外输。这种把全部的集输设施放在陆上的生产系统称为全陆式集输系统。
该系统的海上工程设施一般为:(1)井口保护架(平台)通过海底出油管上岸;(2)井口保护架(平台)通过栈桥与陆地相连;(3)人工岛通过路堤与陆地相连。
全陆式生产系统在海上只设井口保护架(平台)和出油管线,大大减少了海上工程量,便于生产管理。陆地生产操作费用比较低,而且受气候影响小,与同等生产规模的海上生产系统相比,其经济效益好。该系统一般适用于浅水、离岸近、油层压力高的油田。我国滩海油田开发多采用这一集输方式。
2.半海半陆式集输系统
随着油田开发地点水深的增加、离岸距离加大、钢导管架平台的发展和应用,全陆式集输系统已不能适用。为了解决油气长距离混输上岸效率低及油层压力不足的问题,逐步把油气分离及部分处理设备放在海上。油井开采出来的油气在海上经过分离初处理后,再将原油加压管输上岸处理、储存及外输。如伴生气的量小,除作平台燃料外,其余在海上放空烧掉;如天然气量较大,则油、气在海上分离后,分输上岸再处理。这种在海上仅进行油气初处理,而把主要的油气集输设备及储存、外输工作放在陆上的油气集输系统,称为半海半陆式集输系统。该系统适用于离岸不远、油田面积大、产量高、海底适合铺设管线以及陆上有可利用的油气生产基地或输油码头条件的油田,尤其适用于气田的集输。因为在海上不易解决天然气的储存和加工问题,所以一般气田采用半海半陆式的集输系统,如我国渤海湾锦州20-2气田就采用半海半陆式集输系统。
3.全海式集输系统
随着世界工业的迅猛发展,对石油的需求量不断增加。为了简化海上生产的原油上岸后再通过海运外输的环节,凭借现代海洋工程技术在海上建储油罐和输油码头,使油气直接从海上外运。这种将油气的集中、处理、储存和外输工作全部放在海上,从而形成了全海式集输系统。由此也使海洋油田的开发向远海、深海和自然条件恶劣的极地发展。全海式的集输系统可以是固定式,也可以是浮动式;井口生产系统可以在水上,也可以在水下。这种集输生产系统既适合小油田、边际油田,也适合大油田;既适合油田的常规开发,也适合油田的早期开发。这是当今世界适应性最强、应用最广的一种集输生产系统。
综上所述,海上油气集输系统是从全陆式发展到半海半陆式,又从半海半陆式发展到全海式。它们的根本区别在于集输的生产处理设施是放在海上还是陆上,如全部的油气集输生产设施放在陆上,则称为全防式;如全部设施放在海上,称为全海式;如部分设施放在陆上、部分设施放在海上,称为半海半陆式。
二、海上油气集输工艺流程
因为全海式油气集输系统可实现全部油气集输任务,本节就以全海式生产平台为例,介绍油气集输主要工艺流程及设备。出油气集输生产包括油气水分离、原油处理、天然气处理、污水处理等主要生产项目。
1.油气计量及油气生产处理流程石油是碳氢化合物的混合物,在地层里油、气、水是共生的,又由于油气生成条件各异,各油田开采出的原油的组分是不同的。此外,油中还含少量氧、磷、硫及砂粒等杂质。油气生产处理的任务就是将油井液经过分离净化处理,能给用户提供合格的商品油气。由于各油田生产出来的油气组分和物性不同,生产处理流程也不完全相同,如我国海上生产的原油普遍不含硫和盐,因此就没有脱盐处理的环节。有的油田生产的原油不含水,就没有脱水环节。海上原油处理包括油气计量、油气分离、原油脱水及原油稳定几部分。由于海上油田普遍采用注水增补能量的开采方法,因此原油脱水是原油处理的主要环节之一。
2.天然气处理
经油、气分离的天然气,在高温下仍带有未被分离的轻质油、饱和水、二氧化碳及粉尘等物质,这些物质如不处理,一则浪费,二则会造成管路系统的堵塞和腐蚀。天然气处理主要指脱水、脱硫及凝析油回收,有的天然气还要脱除二氧化碳。一般海上平台天然气处理是将由高压分离器分离出的气体和各级闪蒸出来的气体分别进入相应的气体洗涤器,以除去气体携带的液体,再进入不同压力等级的压缩机,分段加压,达到设计压力,一个典型四级分离的气体压缩和凝析油回收系统。由各级气体洗涤器收集的凝析油分别进入各级闪蒸罐的原油管线中。为防止管线被天然气水化物堵塞,采用甘醇-气体接触器,吸收天然气的水分。
由于天然气处理压缩系统投资较高、质量大、占用空间面积大,有的平台由于生产的伴生气较少,往往将生产分离出来的天然气不经处理,一部分作平台燃料,一部分送火炬放空烧掉。如果气量大,可管输上岸再处理。如何处理天然气要经综合评价后做出选择。经气体压缩和凝析回收后出来的气体,一般仍需进一步脱水、脱硫和凝析油回收。脱水主要采用自然冷却法、甘醇化学吸收法、压缩冷却法等,脱水的同时可以脱出轻质油。对含硫的天然气还需要脱硫,同时可以回收硫。海上天然气加工生产系统和陆上一样,这里不再赘述。
3.含油污水的处理
随着世界工业的迅速发展,自然环境受到污染,严重地影响了生物的生长和人类的健康。目前世界环境保护机构规定:油田所有的含油污水必须经过处理,水中含油量低于15~50毫克/升才能排放。故海上采油平台原油脱水出来的污水及生产中产生的含油污水,都必须经过污水处理系统进行处理。
4.海上油气集输生产流程及设备的选型
油气集输生产流程的设计及主要设备的选型,不像钻井工艺及钻机设备那样有定型生产流程及系列的钻机设备,它往往是根据油田产出物的组分、物理性质、产量及油田的开发方式、油气集输系统的选择等条件进行设计制作。如一离岸较远、含气量较高的油田,选用半海半陆式集输系统,油气长距离混输上岸,在技术上有一定难度,为此采用油、气分输上岸流程,即在海上平台进行油、气分离初处理,油、气上岸后再分别进行全面的处理;如采用全海式集输系统,油气处理及其储运设备全部放在海上,那么其具体工艺流程及设备的型号显然是与前者不同的。每个油田根据设计的生产流程、主要设备、工程结构选型及尺度,分别设计安装在模块上,一般都按生产的内容设计,大致分以下几种类型。
(1)井口模块模块。上面设置井口采油树、测试分离器、管汇、换热器等。
(2)油气处理模块。一般设置生产分离器组、电脱水器、原油稳定装置及其配套的管路、仪表、罐、换热器等。
(3)天然气处理模块。一般设置有分离器、洗涤器、压缩机、轻质油回收装置等。
(4)污水处理模块。有隔油浮选、沉降分离、过滤器及其加压的水泵与其辅助设备等。
此外,还有发电配电模块、生活模块、注水模块、压缩模块等。这些模块的设计要求自成系统,同时考虑与其他系统的连接配套。部分生产模块的设备在陆上安装好可进行试车,当在平台吊装就位,连接好水、电、管路系统就可全面试运转,以减少海上工程量,便于生产管理。在设计模块规模时,还要考虑平台面积、施工起吊能力及生产安全要求等。
三、海洋集输平台设施
当人们航行在茫茫大海中,有时会突然发现远方有一些建筑群时隐时现,你一定会欣喜万分,以为看到了海市蜃楼。轮船靠近后才看清这是一些钢铁制造的庞然大物高高地矗立在海面上,不管是台风袭击还是海浪拍打,它都像一个忠实的哨兵守卫在辽阔的海疆。这些钢铁建筑物就是海上石油生产平台。先建平台后打井、采油,这是海上石油和陆上石油的主要差别。通俗地说平台就是给人们在海上生活、生产提供的固定场所。
最初人们在海洋进行石油勘探开发只能在近海,用木料搭制一个作业平台,进行钻井、采油。伴随科学技术的进步,人们希望平台更安全、更坚固耐用,并能适用于环境恶劣的深海条件,逐渐改为使用混凝土或钢铁建造作业平台。再后来发明了自升式钻井平台和钻井船,这两种装备实际上都是船,前者没有自航能力,要靠其他船只拖曳,后者具备自航能力。钻完井后,钻井平台或钻井船驶往新井场。目前海上见到的平台大多是油气生产平台,这些平台上设施的内涵与陆地油田没有什么差别,只是更精良、更安全可靠。图37-1所示是所有设施全部设置在海上的情况,其中中心处理平台把周边各井的油气通过海底管道集中并计量,同时配备安全装置,然后将油气水分离净化,合格的原油输送到储油平台,处理过的水再经过井口平台回注或排放,天然气一般放空烧掉;储油平台主要功能是存放原油并通过穿梭油轮定期运送给用户;动力平台主要是柴油发电机组、天然气透平发电机组、供热锅炉等提供动力的设备;生活平台提供工作人员休息、生活;各平台间有供工作人员行走的栈桥,另外淡水、蒸汽、燃料等管道及电缆也附设其上。当然,根据油田在海洋的地理位置,各种设施并非要全部建在海上。如果距离陆地较近,油气水处理平台、储油平台则建在陆上。即便全部建立在海上,也可根据情况将某些设施适当地组合在一座平台上。井口平台实际就相当于陆上油田计量站,负责单井的集油、油气日产量的计量和注水。浮式生产储油轮相当于陆上油田的联合站,负责油气水分离净化、储油。其动力、生活系统也在船上。这样就大大减少了海上固定平台,降低了投资。如果油田迅速降产或失去生产价值,浮式生产储油轮还可以转移到其他油田继续使用。
图37-1 早期海上采油系统
四、海底输油管道
海洋石油竞争,比拼的是资金的雄厚和技术的先进。油气运输是随勘探和开采而发展的。国际上海洋油气田开发工程设施的模式根据油气储运特点基本分为两类,即全海式与半海半陆式。所谓全海式,是指油气田的油气生产、处理以及产品储存与外销全部在海上进行;所谓半海半陆式,是指油气生产在海上进行,油气处理或在海上、或在陆上进行,而产品储存与外销在上陆后进行。
人类从深海开发油气是今后长时发展的必然趋势。在这样的环境下,伴随着海洋储运技术的出现和发展,世界海洋石油发展的总趋势是走向深水,世界海洋管道从最初的油气田内部短距离海底管道发展到各类长距离平台至陆地海底管道,海底管道设计、施工技术有了长足发展,目前深水大型油气田达50多个,包括200多座深水平台设施、1000多套水下装置、1.2万千米的深海管道等设施。深水技术的发展不断刷新世界深海作业的最新水平:钻井作业水深达3050米,已投产油田作业水深达2192米,海底管道铺设水深达2150米。
六、浮式生产储存卸货装置
浮式生产储油装置既可以独立运输,也可以临时存储,然后由油轮运输到陆地。1976年,壳牌石油公司首次引入FPSO概念,那是一艘在Castellon海域由油船改装而成的FPSO。FPSO是英文Floating Production Storage&Offloading的缩写,含义为“浮式生产储存卸货装置”。它集生产处理、储存外输及生活、动力供应于一体,同时具有高投资、高风险、高回报的海洋工程特点(图37-2)。在那以后的26年间,前15年是其概念形成阶段,9O年代以后,进入一个快速发展阶段。最初的FPSO大都是改装船舶,在这方面,新加坡的船厂做得较为成功,取得了大部分改装船工程项目。目前,FPSO的建造市场主要由日本、韩国造船企业和新加坡船厂统治。由于一艘FPSO造价高达几亿美元,是典型的高附加值船舶,所以近年来中国船厂也开始积极介入这个市场。
图37-2 FPSO工作示意图
静态来看,截至2008年2月,FPSO现役数量为139艘,其中,新建数量为54艘,占比为38.85%,改造数量为85艘,占比为61.15%;订单32艘,其中11艘为新建,21艘为改造,占比分别为34.38%和65.63%。无论是新建还是改造,均经历了两次高峰:1997—1999年、2003年至现在。现役FPSO基本上是在2000年以后建造的,80%左右的船龄在10年以内,大多还可以应用至少10年左右的时间,更新需求动力相对较小。在现役的FPSO中,分布较多的国家有巴西、中国、英国、澳大利亚、尼日利亚、安哥拉等国,数量分别为22艘、15艘、13艘、12艘、12艘、11艘。在FPSO订单中,巴西依然是拥有量最多的,为9艘,其次较多的分别为英国、印度和尼日利亚,其数量分别为5艘、4艘和3艘。
七、发展趋势
挪威专家Einar Holmefjord先生在题为《挪威边际油田开发研究活动现状——DEMO2000》的演讲中指出,“昨天,我们采用重力基础的平台进行钻井和生产,今天,我们采用浮式生产系统和水下设施,明天,我们将井流物从海底直接输送上岸处理,不需要任何海上设施”。Einar Holmefjord先生的话简明地概括了国外海上石油发展现状和发展趋势。为开发边际油田,国外越来越多地采用了浮式生产设施和水下回接技术,开发了一系列的配套技术,如水下混输技术、深水大排量混输泵、水下供配电系统、水下作业机器人、水下卧式采油树、水下管汇和水下多相计量技术等。上部设施包括油气集输和水处理设施的新工艺、新设备也不断出现,如多相透平技术、海水脱氧技术等。这些技术已得到应用,且有些技术已趋于成熟。深水和超深水域油田的开发是国外海上油田开发面临的最大挑战,某些地区,如Ormen Lange、Voring plateau、At1antic Margin的水深在600~1400米,而Angola、Gom、New Foundland、Brazil的水深更是达1500~3000米。深水具有低温、超高静压、温压变化引起立管内介质物性复杂等特点,容易引发立管段塞流、结蜡、水合物等问题,并且一旦出现问题,就会造成重大损失和危害。为解决深水水域介质在管道内的流动安全问题,近年形成了一门新兴学科——流动安全学。目前国外公司开展的深水技术研究包括立管内多相流研究、SPAR模型平台、深水系泊系统、轻型组合立管、电加热管技术、水合物抑制技术(动力学抑制剂的研制)等。解决深水油田开发的技术问题是国外海上石油技术发展的趋势。
海底石油是到海底去开采吗?
海底石油是怎样开采出来的
地球上可供人类开采使用的石油大约有3000亿吨,其中1350亿吨深埋在海底岩层中。20世纪中叶,海上石油平台刚刚建起,便成为勘探和开采海底石油最重要的海上能源站。
A 盐丘里的宝藏
在海上找石油,是要碰运气的。
早在1938年,美国一家小公司,就开始在亚拉巴马州的墨贝尔湾进行勘探,但他们没有发现值得钻探、开采的东西。
那么,怎么才能确定这里有没有石油呢?根据经验,地质学家会先参考该区的地质构成图。对于石油勘探者来说,关键就在于沉积物下面有没有盐丘状的结构。所谓盐丘,就是盐受到挤压,在地表形成的硬块,石油和天然气就被包裹在盐丘内部的各层之间。
在找到盐丘后,探测人员就要采用权威的爆破法进行探测了。他们对盐丘实施小型爆破,记录声波返回所用的时间。爆破法帮助他们提前了解了岩床的大致情况,但是无法彻底揭开它的神秘面纱——盐丘里到底都有什么东西,沙子、页岩、石灰石还是石油?想弄清楚盐丘内部物质成分的唯一办法,就是在这儿放上起重机,开始打井。即使是这样,一口探井能够发现石油或天然气的几率仅为13%。
在陆地勘探中,一旦石油公司租赁了适宜开采石油的土地,工作队就会马上组建,起重机负责把管子吊在准备打井的地方,一个类似人的牙齿一样的钻头被接在第一根管子的前端,准备就绪之后,起重机底部的发动机通过转动那根管子,使它插入地下,这个过程叫“钻井”。而海洋勘探与此类似。
随着井越钻越深,工作人员开始接上新的管子,并向管子里灌一种俗称“泥浆”的化学混合物作为钻井液来清理钻头,并移走打井产生的废物。同时,一个金属壳将会插进钻井管和井壁之间,圆柱形的石油和岩石样本将被取出来并进行分析,这个样本被称为“矿样”。
B 海上作业模式初定
1946年在路易斯安那州,木兰石油公司开始进行水下勘探。他们首先在距离岸边16公里的地方发现了一个有可能开采出石油的勘探点。随后,他们花了两个月时间,在浅水里打了35米的桩,然后搭建了一个固定的平台,这个平台的高度比涨潮时的最高水位还高3.5米。
然后,码头上的工人们每天坐着蒸汽船来到平台上,勘探工人们拖来了一台普通起重机,并把它安放在钻井平台上。为了让它们既不任意漂浮,又不完全固定,工程人员把钻机、深海码头和运输船结合在一起使用。
如此一来,建在水上的勘探平台像是湖里的船坞,打桩机被运到指定地点开始打桩,木制的平台被钉在恰当的位置上,平台中间还为钻杆留了个洞。运输船把起重机运来,工人们把它安放在那个预留孔的上方。所有这些步骤的执行都很严格,唯一能够移动的是停靠在勘探平台边上的运输船,它为抽泥泵、管子架和工作人员提供“安身”之处。这样,一个具有现代石油开采意义的海上平台搭建起来了。
不过,在这个过程中要克服一个最大的障碍,确保平台始终在海底松软的泥沙上保持水平状态。而海底淤泥平均有10米厚,因此打桩至少要打到海底以下15米的深度。有时,一根钢桩甚至要打到45米深才能固定住。但还是会发生意外,1948年2月23目,一位工作人员正在小心地操纵着吊车,想要把钻探设备从运输船转移到平台上,这时吊钩断裂了,价值5.5万美元的设备沉入了大海。
C 第一桶海底石油
事实上,除了钻井平台,海上钻井与陆地钻井有诸多相似之处:把许多钢管连接在一起,挂在起重机上,钢管的前端是一个大金属钻头,专门用来穿透不同硬度的岩石。当钻探人员在比较坚硬的岩层打孔时,如果钻头磨损了,那么所有的设备都提起来,这样才能换上新钻头。因此,海上的工作是十分单调的,频繁地把一根管子接到另一根管子上。钻探平台上,像塔一样高的起重机通过绳索把长长的管子向上拖起,一组工人把新的管子接上去,使连接后的管子长度能够到达海底。
钻探工作队里都会有一位经验丰富的钻井液工程师:他主要负责估测钻探管子里浓稠的清洁剂的流度。这项工作至关重要,就好像人体通过血液循环来运送氧气一样。钻井液通过管子流向钻头,再在钻孔、管子间回流出来。钻井液既可以清洁钻头,又能给它降温,还能把已经钻成粉末的岩石碎末和石油运送到水面上来。而且,钻井液还把海底下的信息带到地面,钻井液里含有什么物质、不含什么都要仔细地监控、分析。
全世界第一次真正从海底开采出石油的日子,是1947年11月的一天。那天,当钻头打到530米时,奇迹发生了,一个工人看见了浓稠的墨绿色液体流进了储存钻井液的深坑里。当时,这些石油每桶卖了2.65美元。此后,工程师们还为输送石油找到了一个好办法,在海床以下2米深的地方铺设海地管线。
D 平台上的生活
每个海上钻井平台至少需要25人才能够运转起来:包括两组钻井工人,6个人一组,两组交替工作,每半天轮换一次;1名专职地质学家对矿样进行评估;4名海员、4名厨师、2名工具维护人员以及1位钻井液工程师和1名勘探队负责人。一个新的工作线就这样形成了,海上工作人员和陆地上不同,他们不是早出晚归的工作模式:工人们每天在钻井平台上辛苦工作12小时,连续工作7天,之后就可以放假7天,他们可以利用假期去岸上放松,然后再回到海上。
因为工作漫长而又枯燥,海上生活的唯一调剂就是吃顿好饭。石油公司从来不在吃上节约开支。不过很显然,海上石油工人的食物里唯一没有的就是酒。由于日常工作的危险性,这使石油公司在很早就禁止任何含有酒精的饮品出现在钻井平台。这条禁令被严格执行,一旦有人违反,就会被立即遣送回岸上。
在钻井平台上,吸烟也被绝对禁止,尤其是在靠近钻探孔的地方,当原油快要抽出来时,钻孔附近会缭绕着一些天然气。因此,哪怕是一点点火星都会要了全队人的命。
不仅如此,海上勘探队还生活在爆炸的恐慌之中,一旦石油或者天然气在高压下发生喷冒,可能就会从钻孔中急涌而出,有时力量巨大到足以摧毁整个钻探平台。钻探平台离陆地越远,发生这种井喷的危险系数就越大。从1955年到1968年之间,世界上有23个钻井平台毁于井喷,这使得投保率几乎翻了一倍。为此,人们发明了一种能够放在油井附近的监控装置,一旦有紧急情况发生,它会自动卸掉从井中溢出的压力,这就是防爆器,它成为预防井喷的必备之物。
E 移动的钻探平台
20世纪50年代早期,由于打一口新井必须要搭建钻井平台,勘探结束后还要拆除,这项高额费用使海上石油勘探的发展速度减慢。为此,一个美国海军退役士兵拉伯德灵机一动:能不能找到一种方法把固定的钻探平台整体挪走,让整套设备从一个勘探点漂浮到另一个勘探点?
拉伯德曾于二战期间在美国海军服役,所以他对驳船十分熟悉,他想用驳船来运输钻探平台。在运输过程中,驳船起到船体的作用,把钻探平台放到驳船上面。当运送到目的地时,驳船就充满水,沉到水下,把钻探平台固定在适当的位置上。当钻探工作完成之后,用电泵将驳船内的水抽净,重新起到运输作用。拉伯德的革新,一经推出就大受好评。
此后,随着技术的革新,还出现了能够停泊在深水区的半潜式钻探平台。这种钻探平台能够潜入水面以下15米深,然后把锚插入海底,再用绳子把锚和钻探平台系在一起,这样就可以把它固定在指定位置了,就像我们在陆地上用绳子和木桩固定帐篷一样。
现在最常用的钻探平台被称为“自升式塔台”。自升式塔台被拖到指定位置之后,它就开始发挥驳船的作用,潜入水中,它的桩腿开始向下伸,直到海底,这些桩腿把平台固定在那儿,然后钻探平台再自动向上升起,一直升到海面以上的安全工作高度。当钻探工作结束时,钻探平台就和钻孔脱离(钻孔要用混凝土封上),浮于海面,被拖往下一勘探地。由于采用了自升式钻塔,深水区钻井开始发展起来,从前桩腿只能插到海底40米,而现在,常常冒险插到90米的深度。
美国墨西哥湾原油泄漏事件的事故经过
美国海岸警卫队2010年4月24日说,“深水地平线”钻井平台爆炸沉没约两天,海下受损油井开始漏油。这口油井位于海面下1525米处。海下探测器探查显示,钻井隔水导管和钻探管开始漏油,估计漏油量为每天1000桶左右。“我们认为这是一起严重的溢出事故,”海岸警卫队军官康尼-特雷尔说,“我们正竭力协助清理浮油。”租用钻井平台的英国石油公司出动飞机和船只清理海面浮油,但因天气状况恶劣,清理工作受阻。
形势恶化
美国海岸警卫队2010年4月28日说,美国国家海洋和大气管理局估计,在墨西哥湾沉没的海上钻井平台“深水地平线”底部油井每天漏油大约5000桶,5倍于先前估计数量。油井当天继续漏油,工程人员又发现一处漏油点。为避免浮油漂至美国海岸,美国救灾部门“圈油”焚烧,烧掉数千升原油。
新发现漏油点
海岸警卫队官员玛丽·兰德里2010年4月28日在一场新闻发布会上说,租用“深水地平线”的英国石油公司工程人员发现第三处漏油点。兰德里说:“英国石油公司方面通报,在海底油井处又发现一处漏油点。”海岸警卫队和救灾部门提供的图表显示,浮油覆盖面积长160公里,最宽处72公里。从空中看,浮油稠密区像一只只触手,伸向海岸线。
兰德里介绍,美国国家海洋和大气管理局估计,油井漏油量每天5000桶左右,是先前估计数量的5倍。英国石油公司不认同这一数量。营业部经理道格·萨特尔说,先前日漏油大约1000桶的估计应该是准确的。
漏油处理
为避免浮油漂至美国海岸,救灾人员着手试验烧油。救灾人员把数千升泄漏原油圈在栏栅内,移至距离海岸更远海域,以“可控方式”点燃。海岸警卫队发言人谢里·本—伊埃绍说,如果当天“烧油”效果良好,救灾人员可能实施更大规模“烧油”行动。
当地时间2010年4月28日下午前,浮油“触角”已伸至距路易斯安那州海岸37公里处海域。美国国家海洋和大气管理局专家查理·亨利预计,浮油可能将于30日晚些时候漂至密西西比河三角洲地区。路易斯安那州州长博比·金德尔呼吁联邦政府提供更多援助。金德尔说,路易斯安那州一处沿海野生动物保护区或将首当其冲,受到浮油破坏。路易斯安那州、密西西比州、佛罗里达州和阿拉巴马州已在海岸附近设置数万米充气式栏栅,围成一道防线,防御浮油“进犯”。
堵漏作业仍在继续。英国石油公司先前尝试用水下机器人启动止漏闸门,未能成功。工程人员定于29日打一口减压井,以遏制原油泄漏,预计耗资上亿美元,工期长达数月。工程人员还考虑建造一个罩式装置,把浮油罩起来,而后用泵把浮油抽上轮船。 2010年5月29日,被认为能够在2010年8月以前控制墨西哥湾漏油局面的“灭顶法”宣告失败。墨西哥湾漏油事件进一步升级,人们对这场灾难的评估也愈加悲观。“墨西哥湾原油泄漏事件已成为美国历史上最严重的生态灾难。”美国白宫能源和气候变化政策顾问卡萝尔·布劳纳在5月30日表示,如果现行所有封堵泄漏油井的方法都无法奏效,原油泄露可能一直持续到8月份减压井修建完毕后才会停止。
“每天原油泄漏量可能将近80万加仑,而且这一数字很可能接近100万。”据美联社消息,有科学家在考察墨西哥湾井喷情况后表示,墨西哥湾泄露的原油量至少比原先估计多两倍,最高多五倍。而据美国有线广播公司称,每天原油的泄露量达1.2万至2万桶。
美国墨西哥湾原油泄漏事故2010年6月23日再次恶化:原本用来控制漏油点的水下装置因发生故障而被拆下修理,滚滚原油在被部分压制了数周后,重新喷涌而出,继续污染墨西哥湾广大海域。 2010年7月15日,监控墨西哥湾海底漏油油井的摄像头拍摄的视频截图显示,漏油油井装上新的控油装置后再无原油漏出的迹象。在墨西哥湾漏油事件发生近3个月后,英国石油公司15日宣布,新的控油装置已成功罩住水下漏油点,“再无原油流入墨西哥湾”。
据美国媒体报道,新控油罩封住漏油后,接下来需要观察此举是否造成油井其他地方出现漏油点。
英国石油公司管理人员此前曾表示,即使新装置能完全控制漏油,英国石油公司将继续打减压井,因为这是永久性封住漏油油井的最可靠方法。
海洋对我们有哪些作用
海洋是矿物资源的聚宝盆.经过20世纪70年代“国际10年海洋勘探阶段”,人类进一步加深了对海洋矿物资源的种类、分布和储量的认识.
油气田
人类经济、生活的现代化,对石油的需求日益增多.在当代,石油在能源中发挥第一位的作用.但是,由于比较容易开采的陆地上的一些大油田,有的业已告罄,有的濒于枯竭.为此,近20~30年来,世界上不少国家正在花大力气来发展海洋石油工业.
探测结果表明,世界石油资源储量为10,000亿吨,可开采量约3000亿吨,其中海底储量为1300亿吨.
中国有浅海大陆架近200万平方千米.通过海底油田地质调查,先后发现了渤海、南黄海、东海、珠江口、北部湾、莺歌海以及台湾浅滩等7个大型盆地.其中东海海底蕴藏量之丰富,堪与欧洲的北海油田相媲美.
东海平湖油气田是中国东海发现的第一个中型油气田,位于上海东南420千米处.它是以天然气为主的中型油气田,深2000~3000米.据有关专家估计,天燃气储量为260亿立方米,凝析油474万吨,轻质原油874万吨.
稀锰结核
锰结核是一种海底稀有金属矿源.它是1973年由英国海洋调查船首先在大西洋发现的.但是世界上对锰结核正式有组织的调查,始于1958年.调查表明,锰结核广泛分布于4000~5000米的深海底部.它们是未来可利用的最大的金属矿资源.令人感兴趣的是,锰结核是一各种生矿物.它每年约以1000万吨的速率不断地增长着,是一种取之不尽、用之不竭的矿产.
世界上各大洋锰结核的总储藏量约为3万亿吨,其中包括锰4000亿吨,铜88亿吨,镍164亿吨,钴48亿吨,分别为陆地储藏量的几十倍乃至几千倍.以当今的消费水平估算,这些锰可供全世界用33,000年,镍用253,000年,钴用21,500年,铜用980年.
目前,随着锰结核勘探调查比较深入,技术比较成熟,预计到21世纪,可以进入商业性开发阶段,正式形成深海采矿业.
海底热液矿藏
20世纪60年代中期,美国海洋调查船在红海首先发现了深海热液矿藏.而后,一些国家又陆续在其他大洋中发现了三十多处这种矿藏.
热液矿藏又称“重金属泥”,是由海脊(海底山)裂缝中喷出的高温熔岩,经海水冲洗、析出、堆积而成的,并能像植物一样,以每周几厘米的速度飞快地增长.它含有金、铜、锌等几十种稀贵金属,而且金、锌等金属品位非常高,所以又有“海底金银库”之称.饶有趣味的是,重金属五彩缤纷,有黑、白、黄、蓝、红等各种颜色.
在当今技术条件下,虽然海底热液矿藏还不能立即进行开采,但是,它却是一种具有潜在力的海底资源宝库.一旦能够进行工业性开采,那么,它将同海底石油、深海锰结核和海底砂矿一起,成为21世纪海底四大矿种之一.
大家知道,蛋白质是构成生物体的最重要的物质,它是生命的基础.现在人类消耗的蛋白质中,由海洋提供的不过5%~10%.令人焦虑的是,20世纪70年代以来,海洋捕鱼量一直徘徊不前,有不少品种已经呈现枯竭现象.用一句民间的话来说,现在人类把黄鱼的孙子都吃得差不多了.要使海洋成为名副其实的粮仓,鱼鲜产量至少要比现在增加十倍才行.美国某海洋饲养场的实验表明,大幅度地提高鱼产量是完全可能的.
在自然界中,存在着数不清的食物链.在海洋中,有了海藻就有贝类,有了贝类就有小鱼乃至大鱼……海洋的总面积比陆地要大一倍多,世界上屈指可数的渔场,大抵都在近海.这是因为,藻生长需要阳光和硅、磷等化合物,这些条件只有接近陆地的近海才具备.海洋调查表明,在1000米以下的深海水中,硅、磷等含量十分丰富,只是它们浮不到温暖的表面层.因此,只有少数范围不大的海域,那儿由于自然力的作用,深海水自动上升到表面层,从而使这些海域海藻丛生,鱼群密集,成为不可多得的渔场.
海洋学家们从这些海域受到了启发,他们利用回升流的原理,在那些光照强烈的海区,用人工方法把深海水抽到表面层,而后在那儿培植海藻,再用海藻饲养贝类,并把加工后的贝类饲养龙虾.令人惊喜的是这一系列试验都取得了成功.
有关专家乐观地指出,海洋粮仓的潜力是很大的.目前,产量最高的陆地农作物每公顷的年产量折合成蛋白质计算,只有0.71吨.而科学试验同样面积的海水饲养产量最高可达27.8吨,具有商业竞争能力的产量也有16.7吨.
当然,从科学实验到实际生产将会面临许许多多困难.其中最主要的是从1000米以下的深海中抽水需要相当数量的电力.这么庞大的电力从何而来?显然,在当今条件下,这些能源需要量还无法满足.
不过,科学家们还是找到了窍门:他们准备利用热带和亚热带海域表面层和深海的水温差来发电.这就是所谓的海水温差发电.这就是说,设计的海洋饲养场将和海水温差发电站联合在一起.
据有关科学家计算,由于热带和亚热带海域光照强烈,在这一海区,可供发电的温水多达6250万亿立方米.如果人们每次用1%的温水发电,再抽同样数量的深海水用于冷却,将这一电力用于饲养,每年可得各类海鲜7.5亿吨.它相当于20世纪70年代中期人类消耗的鱼、肉总量的4倍.
通过这些简单的计算,不难看出,海洋成为人类未来的粮仓,是完全可行的
海洋技术
海洋能源、资源的开发与利用,海洋与全球变化、海洋环境与生态的研究是人类维持自身的生存与发展,拓展生存空间,充分利用地球上这块最后的资源丰富的宝地的最为切实可行的途径.
海洋开发,需要获取大范围、精确的海洋环境数据,需要进行海底勘探、取样、水下施工等.要完成上述任务,需要一系列的海洋开发支撑技术,包括深海探测、深潜、海洋遥感、海洋导航等.
向海洋要淡水已成定势.淡水资源奇缺的中东地区,数十年前就把海水淡化作为获取淡水资源的有效途径.美国正在积极建造海水淡化厂,以满足人们目前与将来对淡水的需求.全世界共有近8000座海水淡化厂,每天生产的淡水超过60亿米3.最近,俄罗斯海洋学家探测查明,世界各大洋底部也拥有极为丰富的淡水资源,其蕴藏量约占海水总量的20%.这为人类解决淡水危机展示了光明的前景.
深海是指深度超过6000米的海域.世界上深度超过6000米的海沟有30多处,其中的20多处位于太平洋洋底,马里亚纳海沟的深度达11000米,是迄今为止发现的最深的海域.深海探测,对于深海生态的研究和利用、深海矿物的开采以及深海地质结构的研究,均具有非常重要的意义.
美国是世界上最早进行深海研究和开发的国家,“阿尔文”号深潜器曾在水下4000米处发现了海洋生物群落,“杰逊”号机器人潜入到了6000米深处.1960年,美国的“迪里雅斯特”号潜水器首次潜入世界大洋中最深的海沟――马里亚纳海沟,最大潜水深度为10916米.
1997年,中国利用自制的无缆水下深潜机器人,进行深潜6000米深度的科学试验并取得成功,这标志着中国的深海开发已步入正轨.
海洋遥感技术,主要包括以光、电等信息载体和以声波为信息载体的两大遥感技术.
海洋声学遥感技术是探测海洋的一种十分有效的手段.利用声学遥感技术,可以探测海底地形、进行海洋动力现象的观测、进行海底地层剖面探测,以及为潜水器提供导航、避碰、海底轮廓跟踪的信息.
海洋遥感技术是海洋环境监测的重要手段.卫星遥感技术的突飞猛进,为人类提供了从空间观测大范围海洋现象的可能性.目前,美国、日本、俄罗斯等国已发射了10多颗专用海洋卫星,为海洋遥感技术提供了坚实的支撑平台
高凝高黏原油输送技术
由于中国近海油田产出的原油多具有高凝固点、高黏度以及高含蜡特性,因此在渤海湾、北部湾和珠江口海域已开发的海上油田所铺设的海底输油管道,全部采用热油输送工艺和保温管道结构。
海底高凝、高黏原油管道输送技术,是我国从海底管道工程起步阶段就注意研究和引进的。从20世纪80年代初期渤海的埕北、渤中28-1、到渤中34-2/4油田和南海北部湾涠10-3油田开发配套的海底输油管道工程,都涉及如何解决好原油输送技术的问题。我们结合油田原油特性,与日本和法国石油工程界合作,研究采用了安全可靠的工程对策,学习引进了相关设计、施工和运行管理技术。随后在渤海湾和北部湾自营开发的诸多油田开发工程中,设计、铺设了众多海底输油管道,形成了我国一套完整的海底高凝、高黏原油管道输送技术。通过大量工程实践应用和检验,证明该技术是实用和可靠的。
一、输送工艺
针对高凝、高黏原油的管道输送,国内外在油田及外输管道工程上使用了各种减阻、降黏方法,诸如加化学药剂、乳化降黏、水悬浮输送以及黏弹性液膜等,进行过大量研究和试验,但由于技术上、经济上的种种原因,均未得到广泛应用。目前,最实用、最可靠的方法仍是采用加热降黏防止凝固的输送工艺。
对高凝原油,为防止原油在管道输送过程中凝固,依靠加热使管道中的原油温度始终维持在凝固点以上。
对高黏原油,采用加热降低黏度,满足管道压降需求和节约泵送能耗。当然,在采用热油输送工艺的同时,一般都相应采用保温管道结构。
(一)工艺模拟计算分析
海上油田开发工程涉及到的海底输油管道,其输送工艺模拟计算,一般要根据油田地质开发提供的逐年产量预测(并考虑一定设计系数),计算不同情况(管径、输量、入口温度等)下的压降、温降以及管道内液体滞留量和一些必要的工艺参数。依此选择最佳管径,确定出不同情况下的工艺参数(不同生产年的输送压力、温度等)。
近年来,原油管道输送工艺模拟计算分析普遍采用计算机模拟程序进行。中国海油从加拿大NEOTEC公司引进了PIPEFLOW软件,该软件与流行的PIPESIM、PIPEPHASE等商业软件类同,汇编了各种计算方法及一些修正系数、参考数据库,供设计分析者选用。
(二)保温材料的选择和厚度确定
对采用热油输送工艺的海底管道,热力计算是非常重要的环节,而其中管道传热系数K值又是管道热力条件的综合表现。K值除受管道结构影响外,埋地的地温条件、保温材导热系数和保温材厚度是三大影响因素。
从计算分析结果看,由于地温变化不大对K值影响不明显,只是在低输量时,要注意其对终温的影响。
保温材性质和保温层厚度是影响K值最关键的因素,也是影响管道终温的关键因素。目前国内选用的保温材料与国外最常用的一样,是采用聚氨酯泡沫塑料。这是一种有机聚合物泡沫,能形成开孔或闭孔蜂窝状结构,优点是导热系数小(≤0.03W/m2·h.℃)、密度低(40~100kg/m3)和吸水率小(≤3%),且化学稳定性好,同时工业生产成熟,价格相对便宜。从保温效果考虑,当然是保温层厚度越大越好,但是,当保温层厚度达到一定值时,保温效果的增加和厚度的增量不再呈线性增加的关系,而是增加十分平缓。特别是对海底管道,保温层厚度增加意味着外管直径增加,就长距离管道而言,外管增加一级管径,钢管用量和施工费增加都是十分可观的。因此,根据计算分析和优化设计,认为选用保温层厚度为50mm是合理的。
(三)停输和再启动计算分析
停输和再启动计算分析是高凝、高黏原油海底管道工艺设计的重要内容,将直接关系到管输作业的安全和可靠。
停输后的温降分析,视为最终确定管道安全时间。对于采用热油输送工艺的管道停输后,随着存油热量散失,原油将从管壁向管中心凝固,凝层的加厚及凝结时释放的潜热将延缓全断面凝固的过程。存油凝固时间取决于管道保温条件、油品热容、停输时的温度和断面直径。通常这些数值越大,全断面凝固时间就越长。一般凝油层厚度在管道轴向是一个变化值,通常以管道终断面凝油厚度作为安全停输时间的控制值。
对于加热输送的高凝、高黏原油管道发生停输,且预计在安全停输时间内时,不能恢复管道输油,为保证管道安全,最有效的措施是在管内存油开始凝固时,用水或低凝油将其置换。
停输后的再启动分析,是考虑管道发生停输后可能出现的最不利工况和环境条件,此时要恢复通油,需计算所需的再启动压力和提出实现再启动要采取的措施以及增设必要的设备和设施。
通常,再启动压力(P),用下式计算:
中国海洋石油高新技术与实践
式中:P为再启动压力(Pa);P。为管道出口压力(Pa);Di为管道内径(m);τ为原油在停输环境温度下的屈服应力(Pa);L为管道可能凝固的长度(m)。
(四)水化物和冲蚀的防止措施
海上油田开发工程涉及的输油管道,是一种与陆上原油长输管道和海上原油转输管道不同的管道,它是从井口平台产出的原油气水混输至中心处理平台或浮式生产贮油装置的油田内部集输管道。该类海底管道输送时伴有从井口采出的水和气,属于混输管道,对这类油管道,也是采用加热输送工艺和保温管道结构。
做这类混输油管道的工艺设计,除做净化原油输送管道通常要进行的模拟计算分析外,还要增加段塞流分析和防止水化物和冲蚀产生的分析。
段塞流现象是油气混输过程中的一个重要问题。正常输送过程中,如何判定是否出现严重的段塞流,以及如何确定段塞流长度,目前已经有了通用的分析计算判断方法。在清管作业过程中,由于管道内存在一定的滞留液量,因此在清管器前将形成液体段塞流。在下游分离设备设计中必须考虑清管作业引起的段塞流影响,一般是设计一定的缓冲容量,使容器操作始终维持在正常液位与高液位报警线之间,确保生产正常。
水化物是影响海底混输管道操作的一大隐患,特别是在以下三种工况下可能出现水化物,为此提出了防止形成水化物的措施:①低输量状况,为防止水化物生成,要求在输送过程中,管道内油气温度始终维持在水化物生成温度以上。但在低输量状况下,温降很快,根据水化物生成曲线判断,可能会生成水化物。此时应及时注入甲醇之类的防冻液(水化物抑制剂),以防止水化物生成;②停输过程,在长期停输状态下,由于管道内油气温度降到了环境温度,且管内压力仍保持较高压力状态,所以可能生成水化物。此时,应采取的措施,一是给管道卸压,二是往管道内注入水化物抑制剂;③重新启动,通常停输后再启动,需要高于正常操作压力的启动压力,而这时温度又往往很低,故很容易生成水化物。此时应采取连续注入水化物抑制剂的做法,直到管道内温度达到正常操作温度为止。
防止产生冲蚀是油气混输管道工艺设计不容忽视的问题。对多相混输管道,若流速超过一定值时,液体中含有的固体颗粒会对管道内壁形成一种强烈的冲刷腐蚀,特别是在急转弯处如海底管道立管及膨胀弯处。因此设计时要计算避免冲蚀的最大流速,其公式为:
中国海洋石油高新技术与实践
式中:Ve为冲蚀速度(ft
lft=0.3048m。/s);
pm为在输送状态下,多相混合物的密度(磅1磅=0.453592kg。
/立方英尺l立方英尺=20831685×10-2m3。
);C为经验系数,连续运行取100,非连续运行取125。冲蚀速度是混合物密度的函数,混合物密度越大,冲蚀速度越小,混合物密度越小则冲蚀速度越大。为保证在管道内不产生冲蚀现象,应控制管内流体流速一定低于计算出的最低冲蚀速度。
(五)操作管理
对海底高凝、高黏原油管道特别要注意以下操作管理问题。
1.初始启动
初始投产运营,一般采用以下作业步骤:①用热水或热柴油预热管道,使管道建立起适应投产作业的温度场;②待测得出口温度达到设计要求后,按要求开井投产。
2.停输及再启动
停输一般分应急停输和计划停输两大类,停输情况不同,再启动方式也不同。为确保管道停输后的再启动,一般在井口平台上设置高压再启动泵。
a.对短期停输,指管内流体最低温度在某个设计值(如原油凝固点)以上,可使井口油气直接进管道或用高压泵启动。
b.对长期停输,在停输之前,应启动高压泵完成管内流体置换作业。如果事先没有准备,属于意外突然停输,一旦停输时间较长,管道内降至环境温度,原油析蜡并凝固。此时,要采用启动高压泵,用柴油置换出原油,然后按初始启动步骤进行。
3.清管
在正常生产过程中,应根据生产情况经常进行清管作业,清除管内蜡沉积和滞留液体,以提高输送效率和减小腐蚀。
4.化学剂注入
在正常输送过程中,应考虑注入以下化学剂:
防垢剂——防止管内由于原油含水而结垢使输量减少;
防蜡剂——防止原油中蜡凝结在管内沉积;
防腐剂——可在管内壁形成一层保护膜,使腐蚀液与管内壁隔离,起到保护作用;
防冻剂——甲醇之类,为防止水化物生成。
二、保温海底管道结构
对采用热油输送工艺的海底高凝、高黏原油管道,为使沿程温降减慢减小,最常见也是最实用的是将输油钢管做成保温结构。我们广泛应用了海底保温管道结构,形成了完整的设计和施工技术。
(一)已应用的结构类型及特点
海底钢管保温管道结构(在此不涉及可挠性软管海底管道),可归结为两大类型:一是双层钢管保温结构;二是单层钢管保温结构。
1.双层钢管保温结构。
或称复壁管结构,其管体断面如图15-3所示。在这一类型中,又存在三种形式。
图15-3 双钢管保温结构
图15-4 带封隔法兰的双层钢管保温结构
第一种形式:管体结构如图15-4所示。单根管节(一般长度为12m或40ft)每端均设较强的封隔法兰。在内外管之间的环形空间,注入发泡材料,形成封闭止水保温单元。这个单元内外管靠两端封隔法兰连为一体,内管的热伸缩靠封隔法兰强行约束,使内外管不发生相对错动。海上铺管时,相邻两个管节的外管,用两个半瓦短节相接。这种形式的优点在于万一管道外管或接口处发生破损,保温失效就被限制在最小范围内。缺点是接口焊接工作量大,用铺管船法铺管,速度上不去,致使工程费用高。
图15-5 带特殊接头的双层钢管保温结构
图15-6 内外管可相对移动的双钢管保温结构
第二种形式:保温管节两端内外管采用特殊接头连接,如图15-5所示。最早是由壳牌石油公司等提出研究,后来为意大利Snamprogetti公司开发成专利产品,它已在一些海底管道工程中投入使用。显然,这种形式已经保留了第一种形式的优点,又克服了其不足。在铺管船上它可以像铺单层钢管一样,多个焊接站进行流水作业,使海上铺管速度大大增加。这种形式的问题在于接头是专利产品,费用高。我国南海东部惠州26-1油田的海底输油管道应用了该专利产品。
第三种形式,如图156所示。这种形式,内外管可做相对移动。在海上连接时,内管接口焊好后,补上接口保温材料,然后拉动外管进行对接,无需采用半。相对来讲,可减少海上焊接工作量,提高铺管速度。中国海油通过与日本的公司合作,引进了这种形式保温海底管道设计与海上安装技术,在已经铺设的诸多海底输油管道上均采用了这种结构形式。
2.单层钢管保温结构。
这类结构与双层钢管保温结构的区别在于外面的护套管不用钢管。按照外套管材料不同,又可分为以下五种。
第一种,高密度聚乙烯外套(Highdensity polyethylene jacket)。高密度聚乙烯是一种超高分子量聚合物,它是阻止水蒸气通过的极好材料。这种超高分子量改善了钢管抗磨、抗冲击、抗撕裂和整体物理强度力学性质。这种预成型的外套系统,与钢管外套相比,具有重量轻、无需作防腐蚀保护的特点。暴露在管节两端的保温泡沫采用热缩性聚合物端帽保护,现场接点处也用热收缩套作止水防腐蚀处理。这种外套系统已被欧美国家的公司在阿拉伯湾、加蓬外海的海底管道工程中应用,最近几年,应用水深已达43m。
第二种,锁接螺旋钢外套(Spirally crimped steel jacket)。这种外套的特点是用钢量远低于采用常规钢管的管道外套。现场接口处不需对焊,暴露在管节端部的泡沫保温材料仍用热缩性端帽保护。这种外套系统,在国外已广为应用,最大应用水深已达55m。
第三种,模制的聚氨酯外套(Molded polyurethane jacket)。这种外套将防腐蚀材料和聚氯乙烯(PVC)泡沫保温材料结合为一体(图15-7)。其优点是:①管道能保持较好的柔度,可用卷绕船铺设。②在海底万一外套被损伤,暴露在水中的保温材料很少,不像其他系统会整个管节泡水。③在保证泡沫干燥方面有较高可靠度。
图15-7 模制聚氨酯外套保温结构
图15-8 橡胶外套保温结构
第四种,橡胶外套(Rubberjacket)。与模制聚氨酯外套相似(图15-8)。只是外套是由PVC泡沫与橡胶层组成。大约每层PVC厚5~8mm,橡胶层厚1mm,层数的多少取决于保温要求,但最外层的PVC泡沫要用较厚的橡胶层来覆盖保护。
第五种,取消外护套系统。在输油钢管的外面施加的保温材料,既能防水也有良好的保温性能,同时又能抗较高的静水压力和具有抗机械破坏较强的能力。这种结构应该说是真正意义上的单层钢管保温结构。
(二)设计和施工关键技术
在我国建成的海底钢管保温管道绝大多数是双重钢管保温结构。该项保温结构的设计和施工技术是由中国海油从日本引进的。
1.设计关键技术
双重钢管保温结构的海底管道设计,关键技术是平管部分结构分析和立管膨胀弯系统的整体分析。
对平管部分的结构分析,应用日本新日铁公司开发的“DPIPE”计算机分析程序。该分析程序的结构模型如图15-9所示。
图15-9 平管结构分析模型
A,A′—外管的不动点;B,B′,E,E′一内外管之间的锚固点(隔舱壁);D—内管的不动点;KB,KB?—弹簧常数;Wf—与土壤的摩擦荷载;A-A′—不动部分(外管);Li+Lm,Li′+Lm′—可动部分(外管)
图中,模拟两端立管膨胀弯约束的弹簧刚度KB、KB?由其后说明的立管膨胀弯和平管连接整体分析模型求出。
对埋地管道,管土之间的摩擦荷载Wf由下式计算:
中国海洋石油高新技术与实践
式中:W=r'hDo;μ是摩擦系数;Do为管道外径;ws为管道水下单位重量;r?为土壤水下容重;h为埋深。
对立管膨胀弯系统的整体分析,采用日本新日铁公司开发的大型三维管道结构分析程序“PIDES”软件。
图15-10给出按该软件建立三维结构分析模型的一个工程实例图。
图15-10 立管膨胀弯系统结构分析模型实例示意图
图15-11 工况组合分析实例示意图
对所建立的系统结构分析模型,要按规范要求和工程实际情况进行充分和必要的多种荷载工况组合分析,一般要考虑的荷载有功能荷载(压力、温度、质量等)、环境荷载(风、浪、流、冰等)、特殊荷载(如地震)以及立管依附的平台位移和平管膨胀伸长施加的荷载。
图15-11给出了一个立管膨胀系统工况组合分析的实例,荷载作用方向是要考虑的重要因素。
2.施工关键技术
从日本引进的双重钢管保温结构的海底管道陆上预制和海上安装技术,主要特点是:预制时单根管节(12m长)保温材固定在内管上,保温材与外管内壁间有一定量空气层,允许内外钢管相互移动,只是在一定长度上(比如2km或1km)才设置刚性锚点法兰形成环形空间的水密隔舱。这样,在海上铺管法安装时,管节连接将能如前图15-6所示,内管焊接合格再补上接口防腐涂装和相应保温材后,采用拉移外管对口焊接的做法,会明显减少外管接口焊接工作量,提高海上铺管速度。
(三)在渤海蓬莱(PL)19-3油田I期海底管道工程中的应用
双重钢管保温结构的海底管道,通过我国诸多工程实践的检验表明是安全可靠的,但也存在用钢量大、海上安装速度慢导致工程造价高的缺点。研究和采用单管保温结构,是保温海底管道技术发展方向。
其中采用锁接螺旋薄钢板(厚1mm)作外套的单管保温结构在2002年由PHILLIPS公司操作的蓬莱19-3油田I期海底管道工程中成功地被应用了。图15-12给出了该保温管道的断面结构。
中国海油正在研究试制用高密度聚乙烯(PE)作外套的单管保温结构管道。这项技术在国外早有应用,结合我国具体情况,特别是在渤海水深小于30m,甚至诸多滩海油田水深小于5米的情况下,采用这种保温结构经济可靠,所用材料和技术均可实现本地化和国产化,有很好的应用前景。
图15-13示出正在研制的PE外套保温管道断面结构。
图15-12 PL19-3海底管道断面结构
图15-13 PE外套保温管断面结构
表15-3给出所研制保温管道的技术参数。
表15-3 保温管道技术参数表
当然,真正意义上的单管保温结构管道,应该是取消外护套系统,在输油钢管外面施加既能防水也具良好保温性能且有较强抗静水压力及抗机械破损能力的保温材,无疑这是该项技术发展的最终方向。目前,在我国南海东部惠州26-1北油田(水深约120m)一条直径为254mm、长约8.7km的海底保温输油管道,通过深入研究和招标推动,已经具备了工程实用基础,其技术可行性和价格被接受性都得出了较好的结论。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。